18 research outputs found

    Efficient noninteractive certification of RSA moduli and beyond

    Get PDF
    In many applications, it is important to verify that an RSA public key (N; e) speci es a permutation over the entire space ZN, in order to prevent attacks due to adversarially-generated public keys. We design and implement a simple and e cient noninteractive zero-knowledge protocol (in the random oracle model) for this task. Applications concerned about adversarial key generation can just append our proof to the RSA public key without any other modi cations to existing code or cryptographic libraries. Users need only perform a one-time veri cation of the proof to ensure that raising to the power e is a permutation of the integers modulo N. For typical parameter settings, the proof consists of nine integers modulo N; generating the proof and verifying it both require about nine modular exponentiations. We extend our results beyond RSA keys and also provide e cient noninteractive zero- knowledge proofs for other properties of N, which can be used to certify that N is suitable for the Paillier cryptosystem, is a product of two primes, or is a Blum integer. As compared to the recent work of Auerbach and Poettering (PKC 2018), who provide two-message protocols for similar languages, our protocols are more e cient and do not require interaction, which enables a broader class of applications.https://eprint.iacr.org/2018/057First author draf

    Enhancements Are Blackbox Non-Trivial: Impossibility of Enhanced Trapdoor Permutations from Standard Trapdoor Permutations

    Get PDF
    Trapdoor permutations (TDP) are a fundamental primitive in cryptography. Over the years, several variants of this notion have emerged as a result of various applications. However, it is not clear whether these variants may be based on the standard notion of TDPs. We study the question of whether enhanced trapdoor permutations can be based on classical trapdoor permutations. The main motivation of our work is in the context of existing TDP-based constructions of oblivious transfer and non-interactive zero-knowledge protocols, which require enhancements to the classical TDP notion. We prove that these enhancements are non-trivial, in the sense that there does not exist fully blackbox constructions of enhanced TDPs from classical TDPs. At a technical level, we show that the enhanced TDP security of any construction in the random TDP oracle world can be broken via a polynomial number of queries to the TDP oracle as well as a weakening oracle, which provides inversion with respect to randomness. We also show that the standard one-wayness of a random TDP oracle stays intact in the presence of this weakening oracle

    Memory Lower Bounds of Reductions Revisited

    Get PDF
    In Crypto 2017, Auerbach et al. initiated the study on memory-tight reductions and proved two negative results on the memory-tightness of restricted black-box reductions from multi-challenge security to single-challenge security for signatures and an artificial hash function. In this paper, we revisit the results by Auerbach et al. and show that for a large class of reductions treating multi-challenge security, it is impossible to avoid loss of memory-tightness unless we sacrifice the efficiency of their running-time. Specifically, we show three lower bound results. Firstly, we show a memory lower bound of natural black-box reductions from the multi-challenge unforgeability of unique signatures to any computational assumption. Then we show a lower bound of restricted reductions from multi-challenge security to single-challenge security for a wide class of cryptographic primitives with unique keys in the multi-user setting. Finally, we extend the lower bound result shown by Auerbach et al. treating a hash function to one treating any hash function with a large domain

    Simple and More Efficient PRFs with Tight Security from LWE and Matrix-DDH

    Get PDF
    We construct efficient and tightly secure pseudorandom functions (PRFs) with only logarithmic security loss and short secret keys. This yields very simple and efficient variants of well-known constructions, including those of Naor-Reingold (FOCS 1997) and Lewko-Waters (ACM CCS 2009). Most importantly, in combination with the construction of Banerjee, Peikert and Rosen (EUROCRYPT 2012) we obtain the currently most efficient LWE-based PRF from a weak LWE-assumption with a much smaller modulus than the original construction. In comparison to the only previous construction with this property, which is due to Doettling and Schroeder (CRYPTO 2015), we use a modulus of similar size, but only a single instance of the underlying PRF, instead of λω(logλ)\lambda \cdot \omega(\log \lambda) parallel instances, where λ\lambda is the security parameter. Like Doettling and Schroeder, our security proof is only almost back-box, due to the fact that the number of queries made by the adversary and its advantage must be known a-priori. Technically, we introduce all-prefix universal hash functions (APUHFs), which are hash functions that are (almost-)universal, even if any prefix of the output is considered. We give simple and very efficient constructions of APUHFs, and show how they can be combined with the augmented cascade of Boneh et al. (ACM CCS 2010) to obtain our results. Along the way, we develop a new and more direct way to prove security of PRFs based on the augmented cascade

    On the Adaptive Security of MACs and PRFs

    Get PDF
    We consider the security of two of the most commonly used cryptographic primitives—message authentication codes (MACs) and pseudorandom functions (PRFs)—in a multi-user setting with adaptive corruption. Whereas is it well known that any secure MAC or PRF is also multi-user secure under adaptive corruption, the trivial reduction induces a security loss that is linear in the number of users. Our main result shows that black-box reductions from “standard” assumptions cannot be used to provide a tight, or even a linear-preserving, security reduction for adaptive multi-user secure deterministic stateless MACs and thus also PRFs. In other words, a security loss that grows with the number of users is necessary for any such black-box reduction

    On the Security Loss of Unique Signatures

    Get PDF
    We consider the question of whether the security of unique digital signature schemes can be based on game-based cryptographic assumptions using linear-preserving black-box security reductions—that is, black-box reductions for which the security loss (i.e., the ratio between work of the adversary and the work of the reduction) is some a priori bounded polynomial. A seminal result by Coron (Eurocrypt\u2702) shows limitations of such reductions; however, his impossibility result and its subsequent extensions all suffer from two notable restrictions: (1) they only rule out so-called simple reductions, where the reduction is restricted to only sequentially invoke straight-line instances of the adversary; and (2) they only rule out reductions to non-interactive (two-round) assumptions. In this work, we present the first full impossibility result: our main result shows that the existence of any linear-preserving black-box reduction for basing the security of unique signatures on some bounded-round assumption implies that the assumption can be broken in polynomial time

    On Tightly Secure Non-Interactive Key Exchange

    Get PDF
    We consider the reduction loss of security reductions for non-interactive key exchange (NIKE) schemes. Currently, no tightly secure NIKE schemes exist, and in fact Bader et al. (EUROCRYPT 2016) provide a lower bound (of O(n^2), where n is the number of parties an adversary interacts with) on the reduction loss for a large class of NIKE schemes. We offer two results: the first NIKE scheme with a reduction loss of n/2 that circumvents the lower bound of Bader et al., but is of course still far from tightly secure. Second, we provide a generalization of Bader et al.\u27s lower bound to a larger class of NIKE schemes (that also covers our NIKE scheme), with an adapted lower bound of n/2 on the reduction loss. Hence, in that sense, the reduction for our NIKE scheme is optimal

    Tightly-Secure Signatures from Five-Move Identification Protocols

    Get PDF
    We carry out a concrete security analysis of signature schemes obtained from five-move identification protocols via the Fiat-Shamir transform. Concretely, we obtain tightly-secure signatures based on the computational Diffie-Hellman (CDH), the short-exponent CDH, and the Factoring (FAC) assumptions. All our signature schemes have tight reductions to search problems, which is in stark contrast to all known signature schemes obtained from the classical Fiat-Shamir transform (based on three-move identification protocols), which either have a non-tight reduction to a search problem, or a tight reduction to a (potentially) stronger decisional problem. Surprisingly, our CDH-based scheme turns out to be (a slight simplification of) the Chevallier-Mames signature scheme (CRYPTO 05), thereby providing a theoretical explanation of its tight security proof via five-move identification protocols

    Signatures with Tight Multi-user Security from Search Assumptions

    Get PDF
    We construct two tightly secure signature schemes based on the computational Diffie-Hellman (CDH) and factoring assumptions in the random oracle model. Our schemes are proven secure in the multi-user setting, and their security loss is constant and does not depend on the number of users or signing queries. They are the first schemes that achieve this based on standard search assumptions, as all existing schemes we are aware of are either based on stronger decisional assumptions, or proven tightly secure in the less realistic single-user setting. Under a concrete estimation, in a truly large scale, the cost of our CDH-based scheme is about half of Schnorr and DSA (in terms of signature size and running time for signing)
    corecore